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Major Accomplishments 

Major accomplishments of the project have been: 

(1) two state of the art stochastic sampUng algorithm for approximate inference in graphical models, both being 

two fastest algorithms available, 

(2) theoretical analysis of problems related to combining information from various sources in building 

probabilistic models, 

(3) an interactive module for construction of causal graphical models that deals with reversible causal 

mechanisms, 

(4) a module that performs search for opportunities, 

(5) algorithms for learning probabilities from small data sets, and 

(6) a prototype of the system, used by over 5,000 people world-wide. 

We briefly summarize each of these in the separate sections below. 
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Stochastic sampling algorithms 

A system that is a combination of Bayesian networks and structural equation models needs to include algorithms 

that are flexible enough to work with both discrete (Bayesian networks) and continuous (structural equation 

models) variables. The algorithms have to accommodate arbitrary probability distributions and work with very 

large models. The only known classes of algorithms that will accommodate these requirements are stochastic 

sampling algorithms. In our work (starting with the previous AFOSR grant), we probed three directions: Latin 

hypercube sampling, quasi-Monte Carlo methods, and adaptive importance sampling. In some of the papers 

resulting from the previous grants we also acknowledged the current grant, as additional experiments or finishing 

touches on the papers were performed after the termination date of the previous grant. 

The new directions of our work were analyzing the convergence of stochastic sampling and investigating the 

confidence intervals around the result of sampling algorithms. One of the useful results of this work is the ability 

of a stochastic sampling algorithm to self-reflect and predict how many more samples are needed to achieve a given 

precision. Two related publications in this area are an article in Computational Statistics (Cheng 2001) and 
another in the prestigious Conference on Uncertainty in Artificial Intelligence (Cheng and Druzdzel 2001). 

Our later work on sampling algorithms has led to the design of the EPIS-BN (Estimated Posterior Importance 

Sampling), an algorithm that is even more efficient than the AIS-BN algorithm developed in our previous grant. 

EPIS-BN uses an algorithm known as Loopy Belief Propagation (LBP) to compute an estimate of the posterior 
probability distribution in a Bayesian network. The LBP algorithm is a modification of an exact belief propagation 
algorithm for singly-connected Bayesian networks proposed in mid-1980s by Judea Pearl. In case of singly- 
connected networks, its complexity is polynomial but unfortunately it does not extend to multiply-connected 

networks and suffers from possible infinite loops and local minima in terms of its precision. In the EPIS-BN 
algorithm, we rely on the fact that the LBP algorithm typically produces results that are close to the posterior 
probability distribution over the network. Once we have the results of the LBP algorithm, we can use these as the 

importance function in an importance sampling algorithm. This algorithm produces excellent results and does not 

require a costly learning stage of the AIS-BN algorithm that we developed previously. 

Our results published in a paper on the AIS-BN algorithm were excellent - on real, hard cases, when the 
probability of evidence is very low, the algorithm has beaten previous algorithms by two orders of magnitude in 

terms of its precision. In terms of computing time required to reach the same precision, the results were even 

better. Here is a typical experimental result of the AIS-BN algorithm: 

University of Pittsburgh School of Information Sciences 
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Figure 1: Observed example convergence rate improvement s in the proposed 
adaptive importance sampling algorithm for Bayesian networks (AIS- 

BN). 

Figure 3 shows example performance comparison of the three algorithms. Figure 4 shows the performance of the 

AIS-BN algorithm at a finer scale. 
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Figure 2: Observed example convergence rate improvements in the proposed 
adaptive importance sampling algorithm for Bayesian networks (AIS- 

BN): A close-up of the adaptive importance sampling algorithm in 

Figure 1). 

The EPIS-BN algorithm improves these phenomenal results even further. We tested it on several large real 

Bayesian networks and compared the results with the AIS-BN algorithm. The empirical results showed that the 

EPIS-BN algorithm provides a considerable improvement over the AIS-BN algorithm, especially in those cases 

that are hard for the latter. Figures 3 and 4 show typical results obtained in our tests. 

University of Pittsburgh School of Information Sciences 
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Figure 3: Convergence rate comparison for AIS-BN and EPIS-BN as a function of 

the number of samples on the ANDES network. 
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Figure 4: Convergence curve for EPIS-BN in a finer scale. The horizontal line 

shows the accuracy reached by loopy belief propagation. 

We have tested to what degree these results can be improved further. Probabilistic logic sampling, the first 

stochastic sampling algorithm for Bayesian network, with no evidence is equivalent to importance sampling with a 

perfect importance function (the prior probability distribution!). When run on the networks that we used in our 
tests, the probabilistic logic sampling algorithm achieves precision on the order of 10"'*, which is only slightly better 

than the precision that the EPIS-BN algorithm reached. It seems, we conclude, that EPIS -BN is close to what 

sampling algorithms for Bayesian networks can achieve. We have presented the EPIS-BN algorithm in the 
prestigious Conference on Uncertainty in Artificial Intelligence this year and are working on a journal submission 

{Mathematical and Computer Modelling, special issue on Optimization and Control for Military Applications, 

edited by Dr. Juan Vasquez). 

University of Pittsburgh School of Information Sciences 
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Combining information from various sources in building probabUistic models 

One of the most serious hurdles in practical application of probabilistic methods is the effort that is required of 

model building and, in particular, of quantifying graphical models with numerical probabilities. Knowledge 

engineers quantifying probabilistic models usually combine various sources of information, such as existing 

textbooks, statistical reports, databases, and expert judgment. However, lack of attention to whether the sources 

are compatible and whether they can be combined may lead to erroneous behavior of the model. For instance, an 
unwary knowledge engineer might combine the prevalence of a certain disease, obtained from a general-population 

study, with the sensitivity and specificity of a certain test obtained at hospital. This combination of information 

may lead to a several orders of magnitude error in the computation of the posterior probabilities of interest. While 

most knowledge engineers realize the danger of misapplication of data that describe different population groups, 

they often fail to appreciate purely statistical effects that play a role in probabilistic information. Even though one 
might think that no experienced knowledge engineer would make such a mistake, the fact that sensitivity and 

specificity may be biased when obtained from a subpopulation has never been mentioned in Bayesian network 

literature. Even in medical literature, it is not uncommon to find values of sensitivity and specificity without an 
explanation of how they were obtained, because they are assumed to be invariant. After all, sensitivity and 
specificity do not depend on the prevalence. Builders of probabilistic models realize that different population 
characteristics, such as sex, race, diet, etc., can influence both sensitivity and specificity, but we forget about purely 

statistical phenomena such as conditioning. 

Although variability of sensitivity and specificity has been reported in the medical literature for decades—see, for 

instance (Ransohoff 1978) and (Knottnerus 1987) - many of today's epidemiological studies on the assessment of 

diagnostic tests fail to mention it, and, to our knowledge, researchers in the area of artificial intelligence have never 
considered it when building probabilistic models. This entails a significant risk because, as we have shown, 

collecting these statistics in one setting and using them in another can lead to errors in posterior probabilities as 
large as several orders of magnitude. We used the framework of directed probabilistic graphs to systematize our 

observation, to explain the risks of naive knowledge combination, and to offer practical guidelines for combining 
knowledge correctly. The problems that we pointed out are due to purely statistical effects related to selection 

phenomena. They may occur when data or knowledge are collected from different subpopulations and 

subsequently combined into one model, or even when the parameters for a causal model are obtained from the 

same subpopulation in which the model is applied. On the contrary, these problems have nothing to do with small 

databases, missing data, or unreliable expert judgment. 

On the other hand, an over-cautious position of never combining numerical data obtained from different sources 
would result in disregarding valuable information, which might be useful in model construction. In fact, we have 

shown that the criteria "do not combine knowledge from different sources" and "obtain all the data from the 

subpopulation in which the model will be applied" are neither necessary nor sufficient to guarantee the correctness 

of the model. For this reason, we have introduced a criterion for combining data from different sources, namely 

that the causal graph, built from expert knowledge, is linearly ordered. We have also offered an algorithm for 

making the graph linearly ordered by adding links that represent the probabilistic dependencies induced by selection 

University of Pittsburgh School of Information Sciences 
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mechanisms. Knowledge engineers must not ignore this property, because the absence of those links may lead to 

important errors in the computation of the probabilities, even when all the probabilities were obtained from the 

subpopulation in which the model is applied. 

Our key results, published in Journal of Machine Learning Research (Druzdzel & Diez 2003) are captured in the 

following two theorems: 

Theorem 1 

Given a selection variable Xs in a Bayesian network and a node Xi (other than Xs), such that Xi is not an 

ancestor of Xs, the conditional probability distribution of Xi given Parents(Xi) is the same in the general 

population and in the subpopulation induced by value Xs, i.e., 

Pr(Xi|Pa(Xi),Xs) = Pr(Xi|Pa(Xi)). 

Definition 2 

A graph is linearly ordered for Xs iff 

V Xi, Xi e {Xs} u Anc(Xs), 3 Xj, Xj e Pa(Xd, 3 X^, X^ e Pa(Xd 

=> (Xj = Xk) V (Xj e Pfl(XO) V (Xk 6 Pa(Xj)). 

This property can be phrased as follows: if Xs or an ancestor of Xs (say Xi) has two parents (Xj and Xk), then one 
of the two must be a parent of the other. Obviously, if each ancestor of Xs has only one parent, then the graph is 

linearly ordered for Xs. 

Definition 3 

A causal Bayesian network is linearly ordered for Xs if its graph is linearly ordered for Xs. 

Theorem 4 

Given a Bayesian network that is linearly ordered for Xs, for each configuration XR of the variables in 

XR = X\{XS}, it holds that 

Pr(xR I Xs)= n i^sPr(Xi|/'«(Xi), Xs). 

The theorems, based on Markov condition will help the knowledge engineer determine whether some of those 

variables can be removed from the graph, provided that the conditional probabilities of their ancestors are 

coherently chosen. In contrast, when a node is not an ancestor of any of those selection variables, its conditional 

probability is invariant and can be obtained from any source. 

The conclusions of our analysis are general, applicable in model building across domains. One example is medical 

or machine diagnosis, where models are built based on a combination of hospital/field experience, physiological 

model/device specification, and hospital/repair shop data. Yet another is fraud detection, where models are based 

on general population characteristics combined with customer transaction data. Yet another is detection and 

prevention of terrorist activities, where the information consists of intelligence reports, past cases, and surveillance 

data. 

Our motivating examples were based on a medical data set, but the same argument can be made with respect to 

numbers obtained from human experts. Subjective probability judgments have been shown to rely on judgmental 

University of Pittsburgh School of Information Sciences 
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heuristics (Kahneman and Tversky 1982) and they are very sensitive to prior experiences (in fact prior experiences 

are often all that probability judgments are based on). Humans have been shown to be able to match the 

probability of observed events with an amazing precision in certain experiments (Estes 1976). Physicians working 

in a hospital will tend to match the sensitivity and specificity of medical symptoms and tests that they observe in 

their practice. These are often determined by the circumstances, such as what brought the patients to the hospital 

or clinic in the first place. Physician experts will tend to at least adjust the parameters to what they observe in their 

practice. While their experience is valuable for building decision models for the particular clinics where they have 

worked, in general they cannot be readily used in other settings. Similarly, one cannot assume that this knowledge 

can be combined with data originating from other settings. 

Although the main focus or our work was knowledge engineering, it sheds light on other fields. From the point of 

view of machine learning, it emphasizes the importance of selection biases in the automatic construction of causal 

models from databases. It can also be useful when one or several agents look for information (for instance, by 

searching the Internet) and try to build a model by combining information extracted from several sources. In this 

scenario, the agent should use qualitative knowledge as a guide for combining numerical data. A particular case of 
this scheme would be the development of a tool for automated elicitation of knowledge through interaction with 

human experts, similar to those that exist for building rule-based expert systems. Finally, from the point of view of 
statistics, our work is useful for the application of causal models in epidemiology (Greenland 1999, Pearl 2000, 

Heman 2002), in which the analysis of data (in general, selected data) is based on a causal graph built from expert 
knowledge. Our analysis might also be applied to meta-analysis, a technique that has become popular in the last 

years, especially in medicine, based on extracting data from different epidemiological studies published in the 
literature and combining them in order to draw more reliable or more precise conclusions. The data of each study 
and the coUection of studies are prone to selection biases (see, for instance, Macaskill 2001). 

University of Pittsburgh School of Information Sciences 
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Support for construction of causal graphical models 

Causal models based on structural equations have become a major formalism for representation of causal relations 

and reasoning, such as predicting effects of actions, deriving causal relations from data, and generating causal 

explanations for observed events. Since the quality of causal reasoning depends directly on the quality of the 

underlying models, we focused our work on (1) providing a sound and effective methodology in constructing 

requisite causal models, (2) supporting derivation of the effects of actions with systems containing reversible 

mechanisms, and (3) assisting decision makers in achieving decision objectives by searching for novel interventions. 

This work led to the publications in the prestigious Annual Conference on Uncertainty in Artificial Intelligence 

(Lu and Druzdzel 2000), European Conference on Symbolic and Qualitative Approaches to Reasoning with 

Uncertainty (Lu and Druzdzel 2001), European Workshop on Probabilistic Graphical Models (Lu and Druzdzel 

2{X)2), and a doctoral dissertation (Lu 2003). We are planning journal submissions based on this work. In 

addition, we have developed a working system ImaGeNIe that supports causal model construction and utUization. 

Figure 1 shows the architecture of ImaGeNIe. 

Knowledge 
Engineers 

Hierarchy 
Navigation 

Equation 
Authoring 

Domain 
Experts 

Mechanism 
Selection 

Variable 
Manipulation 

Merging 
Mechanisms 

Normal 
Authoring 

Models 
Model 

Reading/Writing 

Figure 1: System architecture of/maGeMe. 

ImaGeNIe includes three knowledge structures: mechanism knowledge bases, which holds domain knowledge 

expressed as causal mechanisms, model building workspace, which serves as a blackboard for model composition, 
and models. The domain knowledge can be maintained either by equation authoring interface, or by mechanism 

extraction operation that enables model builders to extract reusable mechanisms from existing models. Model 

buUder can use hierarchy navigation interface to locate the mechanism of interest and select them into the model 
building workspace with assistance of the mechanism selection operation. In addition to mechanism selection and 

traditional model authoring operations, model builder can manipulate variables and merge mechanisms as the 

model building process evolves. The underlying casual ordering module restructures the models according to 

users' interactions with the system. Figure 2 shows a typical ImaGeNIe graphical user interface. 

University of Pittsburgh School of Information Sciences 
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Figure 2: ImaGeNIe graphical user interface. 

The mechanism-based view of causality, first proposed by Simon (1953) as the theory of causal ordering, is the 
theoretical foundation of the implementation of ImaGeNIe. The theory of causal ordering explicates the causal 

relations in a self-contained structure model into a causal graph. We extended the theory of causal ordering to 

explicate causal relations in an under-constrained structure model such that its graphical representation can 

represent decision makers' intermediate understanding of decision problems. The model construction process in 
ImaGeNIe can be viewed as the process of assembling mechanisms from under-constrained models into self- 

contained models. Figure 3 shows an under-constrained models and mechanisms that are ready to be merged into 
the under-constrained model. We have found in an empirical test that ImaGeNIe can effectively assist users in 

constructing causal models for causal reasoning. 
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Figure 3: An example model session with ImaGeNIe. 
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In addition to providing decision makers with a sound methodology for building causal models, we assist decision 

makers in deriving the effects of manipulations on systems containing reversible mechanisms. The works of Pearl 
(1993, 2000) and Spirtes et al (1993, 2001) has focused on predicting the effects of actions for systems containing 

only irreversible mechanisms. Their approach of predicting the effect of action has been referred as the 'arc- 

cutting' approach. For example, the rain (R) can get us wet (W), R->W, however, wearing the rain coat can 

prevent us getting wet but it does not make the rain go away, i.e., the arc between R and W will never reverse. 

Druzdzel (1992) recognized that the causal reversibility in systems containing reversible mechanisms. For 

example, in the power train of a car, we normally have engine (E) that drives the wheel (W) through transmission 

(T), E->T->W, however, when we drive a car down a hill, it is common practice to slow down the care by 
switching to a lower gear. In other words, causal relations among the variables in question have reversed to 

E<-T<-W. This type of reasoning requires prior knowledge of what mechanisms will be brought into the system 

due to the manipulation and what mechanisms will be released from the system to maintain as self-contained. This 

reasoning is known as changes in structure in econometrics. 

To support predicting the effects of actions for systems that consist of mixtures of mechanisms, we formalized the 
representations of causal reversibility and action operator. We defined the set of effect variables as a property of a 
mechanism. A mechanism can be categorized into three categories according to their reversibility: (1) completely 

reversible: every variable in the mechanism can be an effect variable, (2) partially reversible: some of the variables 

in the mechanism can be effect variable, and (3) irreversible: exactly one of the variables in the mechanism can be 
an effect variable. We draw the analogy between changes in structure and STRIPS-like action language (popular 

in AI) to define the action operator Act(E, Epre, Eadd, Edel) where E is the model that an action applies on, 

Epre is the set of preconditions that must be satisfied before an action can be applied, Eadd is the set of structural 
equations to be added into E, and Edel is the set of structural equations to be removed from E. In addition, we 
assist decision makers in deliberating an action, namely reasoning about which structural equations should included 

in Eadd or Edel. In particular, we developed algorithms to answer two types of queries: (1) When manipulating a 

causal model, which mechanisms are possibly invalidated and can be removed from the model? (2) Which variables 

may be manipulated in order to invalidate and, effectively, remove a mechanism from a model? Figure 4 shows the 

support of changes in structure in ImaGeNIe based on these two algorithms. 
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Figure 4: Changes in structure in ImaGeNIe. 

Search for opportunities 
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Although changes in structure assist decision makers in predicting effects of actions, decision makers still need to 

provide partial parameters for an action operator, namely Eadd or Edel, for deliberating an action. We took a step 

further to address the decision scenarios in which none of Eadd or Edel is given but a causal model and a decision 

objective. This decision scenario happens when a decision maker who is confronted with a complex system does 

not know which variables to best manipulate or to observe to achieve a desired objective. We refer to this problem 

as search for opportunities, which amounts to both identifying the set of policy variables and computing their 

optimal setting for a given decision objective. To solve the problem of search for opportunities, we introduced the 

concept of value of intervention which arises from considering jointly the economic factors and effects of actions 

in causal models. We proposed augmented causal models, which allow molders to specify observability, 

manipulability, and focus as the property of variables, to describe a decision problem at hand. We developed 

myopic search algorithms to solve the problem of search for opportunities for systems. The algorithm looks one 

step ahead to compute the value of intervention for each manipulable variable in the model and yields the optimal 

sequence of actions. Figure 5 shows how the algorithms perform myopic search for opportunities. 

(«'"!» 

Figure 5: Myopic search for opportunities 

The myopic search for opportunities can be applied by a robot to find out the next most effective action. It can also 

be used in an interactive modeling environment, where we present to users a list of actions ranked by their values 

of intervention computed by the myopic search for opportunities (shown in Figure 6). Users then have the option 

to override systems' suggestion to select the action that is not ranked highest in the list. This allows users to 

perform 'what if analysis in generating decision sequences. 

University of Pittsburgh School of Information Sciences 
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Figure 6: A ranked list of interventions computed by the myopic search for opportunities. 
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Learning probabilities from small data sets 

The focus of our work in this area, published in the International Journal of Approximate Reasoning, was learning 

CPTs in Bayesian network models from small data sets given an existing network structure. Learning CPTs 

amounts essentially to counting data records for different conditions encoded in the network. Roughly speaking, 

prior probability distributions are obtained from relative counts of various outcomes for each of the nodes without 
predecessors. Conditional probabUity distributions are obtained from relative counts of various outcomes in those 

data records that ftilfill the conditions described by a given combination of the outcomes of the predecessors (this 

combination of parents' outcomes is often referred to as conditioning case). While prior probabilities can be 

learned reasonably accurately from a database consisting of a few hundred records, learning CPTs is more 

daunting. In small data sets, many conditioning cases are represented by too few or no data records and they do 

not offer sufficient basis for learning conditional probability distributions. In cases where there are several 
variables directly preceding a variable in question, individual combinations of their values may be very unlikely to 
the point of being absent from the data file. In such cases, the usual assumption (direct or indirect, by means of 

Dirichlet priors) made in learning the parameters is that the distribution is uniform, i.e., the combination is 

completely uninformative. 

A CPT offers a complete specification of a probabilistic interaction that is powerftil in the sense of its ability to 
model any kind of probabilistic dependence between a discrete node Y and its parents Xi, ..., Xn. However, when 
learning the conditional probability distribution from data sets, this precision can be illusory. If the size of the data 
set is small, many of the CPT entries will have be learned from an insufficient number of records, undermining the 

very purpose of a ftiU specification. We proposed enhancing the process of learning the CPTs from data by 

combining the data with structural and numerical information obtained from an expert. Given expert's indication 

that an interaction in the model can be approximated by a Noisy-OR gate (Henrion 1989, Pearl 1988), we first 
estimate the Noisy-OR parameters for this gate. Subsequently, in all cases of a small number of records for any 

given combination of parents of a node, we generate the probabilities for that case as if the interaction was a 
Noisy-OR gate. Effectively, we obtain a conditional probability distribution that has a higher number of 

parameters. At the same time, the learned distribution is smoothed out by the fact that in all those places where no 

data is available to learn it, it is reasonably approximated by a Noisy-OR gate. Noisy-OR distributions 
approximate CPTs using fewer parameters and learning distributions with fewer parameters is in general more 

reliable (Friedman et al. 1999). 

We tested our approach on Hepar II, a Bayesian network model for diagnosis of liver disorders consisting of 73 

nodes. The parameters of Hepar II are learned from a data set of 505 patient cases. We showed that the proposed 

method leads to an improvement in the quality of the model as measured by its diagnostic accuracy. While the 

observed improvement in accuracy were modest (only 6.7% and 14.3% in comparison to a multiple-disorder model 

and single-disorder model respectively), it was obtained at a negligible cost, which makes our method attractive in 

practice. 

For each combination of a node and its parents (a family) in the multiple-disorder version of the Hepar II model, 

we verified with our expert whether the interaction could be approximately modeled by a Noisy-OR gate. The 
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expert identified 25 nodes (from among the total of 62 nodes with parents) that could be reasonably approximated 

by Noisy-OR gates. Testing the Noisy-OR assumption for each of the gates with the expert was quite 

straightforward once the expert had understood the concept of independence of causal interaction. When deciding 

whether an interaction can be approximated by a Noisy-OR gate, we followed the criteria proposed by Diez 

(1997). An interaction can be approximated by a Noisy-OR gate if it meets the following three assumptions: (1) the 

child node and all its parents must be variables indicating the degree of presence of an anomaly, (2) each of the 

parent nodes must represent a cause that can produce the effect (the child variable) in the absence of the other 

causes, (3) there may be no significant synergy among the causes. 

Each of the such identified Noisy-OR gates was subject to the following learning enhancement. Whenever there 

were sufficiently many records for a given conditioning case, we used these records to learn a corresponding 

element of the CPT. When there were no or very few data records, we generated the CPT entry from our Noisy- 

OR parameters. Eifectively, the complete CPT, once learned, was a general CPT with a fraction of its elements 

generated using the Noisy-OR assumption. The assumption that we made was that a general conditional 

probability table will fit the actual distribution better than a Noisy-OR distribution. Noisy-OR will fit better than a 

uniform distribution in those cases when there was not enough data to learn a distribution. 

We performed a series of empirical tests of diagnostic accuracy of various versions of the model. In order to make 

the comparison fair, we used the same data set for learning the parameters of each of the models. Our data set 
contained 505 patient records classified in 9 different disorder classes. In each case we used the same measure of 

accuracy: diagnostic performance using the leave-one-out method (Moore 1994). Essentially, given n=505 data 
records, we used n-1 of them for learning model parameters and the remaining one record to test the model. This 
procedure was repeated n times, each time with a different data record. In our tests, we used as observations only 

those findings that were actually reported in the data (i.e., we did not use the values that were missing, even 
though we used their assumed values in learning). The diagnosis for each patient case was calculated given the 
evidence, i.e., a subset of the 66 possible observations such as symptoms, signs and the laboratory tests results. 
These data did not include the results of a biopsy. By accuracy we mean the proportion of records that were 
classified correctly. Whenever we report accuracy within a class, we report the fraction of records within that class 

that were classified correctly. 

Our second test aimed at comparing the diagnostic accuracy of the plain multiple-disorder model to the models 

whose probabilities were smoothed out using the Noisy-OR parameters. Here, we focused on three models: (1) the 
plain multiple-disorder model (i.e., general CPT) and two models enhanced with: (2) Noisy-OR parameters 

obtained from data, and (3) Noisy-OR parameters assessed by the expert. 

Our enhancement process replaced those elements of the CPT that had not enough data records to learn a 

distribution reliably, i.e., when the number of records found in the data set was lower than a replacement threshold 

(we specified this threshold as a percentage of all records in the data set, i.e., a threshold of 10% corresponds 

roughly to 50 records). Figure 7 shows the relationship between the replacement threshold and the percentage of 

all CPT entries that were replaced by the Noisy-OR distributions. The percentage of replaced CPT entries seems 

to be directly proportional to the replacement threshold. 
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Figure 7: Percentage of conditional probability distribution entries replaced by Noisy-OR distributions as a function 

of the replacement threshold. 
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Figure 8: Diagnostic accuracy as a function of the replacement threshold, window=l. 

Figure 8 shows the results for the three tested models for the window size of 1. It pictures the diagnostic accuracy 
of the models as a function of the replacement threshold. In addition we included the results for the single-disorder 

model. It appears that the highest accuracy was reached by the model whose CPTs were enhanced with the Noisy- 

OR parameters learned from data. The highest accuracy achieved by the models was 45%, 48%, and 46% for the 

CPT model, the data Noisy-OR model, and the expert Noisy-OR model respectively. 
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Figure 9: Diagnostic accuracy as a function of the number of disorder cases in the database (class size) for the CPT 

and two versions of the model with Noisy-OR parameters. 

Figure 9 shows the performance within each class for the three models. Again we observed that for almost each of 

the disorders, the data Noisy-OR model performed better than the other models. 

Diagnostic accuracy of the multiple-disorder model enhanced with the Noisy-OR parameters was 6.7% better than 
the accuracy of the plain multiple-disorder model and 14.3% better than the single-disorder diagnosis model. This 

increase in accuracy has been obtained with very modest means - in addition to structuring the model so that it is 

suitable for Noisy-OR nodes, the only knowledge elicited from the expert and entered in the learning process was 
which interactions can be viewed as approximately Noisy-OR. This knowledge was straightforward to elicit. We 

have found that whenever combining expert knowledge with data, and whenever working with experts in general, 
it pays off generously to build models that are causal and reflect reality as much as possible, even if there are no 

immediate gains in accuracy. 

We have also observed that the diagnostic accuracy of the model based on numbers elicited from the expert (as 

opposed to learned from data) was quite good for diseases with well understood risk factors and symptoms. The 
accuracy tends to be lower in case of those diseases whose mechanisms are not exactly known, for example 

Functional hyperbilirubinemia. Reactive hepatitis, or PBC, even if the number of records in the data set was very 

small. 
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Other contributions 

The Hepar II medical diagnostic system 

In order to demonstrate the usefulness of our system in practical setting, we have continued our successful 

collaboration focusing on building a practical medical system for diagnosis of liver disorders. The resulting system, 

Hepar II uses our software at its core and consists of a Bayesian network model comprising over 60 variables, such 

as disorder variables, risk factors for various disorders, symptoms, and test results (Figures 5 and 7 show the 
model and the model as seen through GeNIe 2.0 diagnostic interface). The system's parameters are obtained 

from a database of real patient cases collected at the Institute of Food and Feeding in Warsaw, Poland. The 

resulting system is applied both as a diagnostic tool in clinical setting and as a tool for training beginning 

diagnosticians. The results of this work have resulted in several joint publications (Usted in the publication list). 

Figure 5: The Hepar II Bayesian network model. 
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A method for evaluating probabUity elicitation schemes 

As more and more decision-analytic models are being developed to solve real problems in complex domains, 

extracting knowledge from experts is arising as a major obstacle in model building (Druzdzel & van der Gaag 
2000). Quite a few methods have been proposed to elicit subjective probabilities from domain experts. These 

techniques balance quality of elicitation with the time required to elicit the enormous number of parameters 

associated with many practical models. Furthermore, the effectiveness of elicitation techniques is likely to task- 

dependent (Spetzler 1975) or even expert-dependent (Lopez 1990), and there is no guidance as to how to select an 

appropriate method for various domains or experts. Structure elicitation is likewise a tedious problem and formal 

techniques for this task are even less mature. Systematic evaluation and comparison of different model elicitation 

methods are thus becoming of growing concern. 

In Bayesian probabilistic models, encoded probabilities reflect the degree of personal beliefs of the experts. The 
sole purpose of probability elicitation is to extract an accurate description of the expert's personal beliefs. In order 

to judge whether the elicitation procedure has produced an accurate model, therefore, the elicitor must know 

intimate detaUs about the expert's knowledge. Unfortunately, these details that the elicitor is seeking from the start 

are hidden from explicit expressions; so it has not been possible to evaluate elicitation schemes directly. Less 

direct methods are the only possibility. 

In a paper published by IEEE Transactions on Systems Man & Cybernetics (Wang et al. 2002) we present an 

objective approach for evaluation of elicitation methods that avoids the assumptions and pitfalls of existing 
approaches. Our technique is much closer to the ideal "direct" comparison between the elicited network and the 
expert's beliefs. The main idea is to simulate the training/learning process of an expert by allowing the trainee to 
interact with a virtual domain. Underlying the domain is a Bayesian network that is used to stochastically update 

the state of the world in response to the subject's interaction. Then by recording every state of the world that is 

experienced by the trainee, we can effectively gain direct access to the trainee's knowledge. It is quite an 
established fact that people are able to learn observed frequencies with an amazing precision if exposed to them for 
a sufficient time (Estes 1976). Therefore, after training, the trainee obtains some level of knowledge of the virtual 

world and, consequently, becomes an expert at a certain proficiency level. This knowledge, in the form of a 

database of records, can be converted to an "expected" model of the expert by applying Bayesian learning 

algorithms to the database. Finally, this expected expert model can be directly compared to the model elicited from 

the expert to judge the accuracy of elicitation. 

Our approach captures a subject's state of knowledge of the probabOistic events in the toy world. The subject's 

experience with the toy world, rather than the actual model underlying the world, forms the basis of his or her 
knowledge. For this reason, the learned model should be the standard used to evaluate the elicitation schemes, 

rather than the original toy model. This technique allows us to avoid the expensive process of training subjects to 

fiilly-proficient expertise. For example, our expert's experience may have led him to explore some states of the 

world very infrequently. In this case, even if our elicitation procedure is perfect, the elicited probabilities of these 

states may be significantly different from the underlying model. Using the expert's experience rather than the 

original model gets around this problem completely because we know precisely how many times our expert has 

visited any given state of the world. 
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We use these techniques along with a toy cat-mouse game to evaluate the accuracy of three methods for eliciting 

discrete probabilities from a fixed structure: (1) direct numerical elicitation, (2) the probability wheel (Spetzler 

1975), and (3) the scaled probability bar (Wang & Druzdzel 2000). We use mean squared errors between the 

learned and the elicited probabilities to evaluate the accuracy of each of the three methods. We show that for our 

domain the scaled probabUity bar is the most effective and least time-consuming. 

Comparison of rule-based expert systems and systems based on Bayesian networks 

Two major classes of expert systems are those based on rules, known as rule-based expert systems, and those 

based on probabilistic graphical models, often referred to as probabilistic expert systems or normative systems. 

Rule-based expert systems, originating from the pioneering work of Buchanan and Shortliffe on the Mycin system 

(Mycin 1984), aim at capturing human expertise in terms of rules of the form if condition then action. There is 
overwhelming psychological evidence (e.g., Newell & Simon 1972) that such rules are capable of modeling the 
human thought process. A set of rules can capture a human expert's relevant knowledge of a domain and can be 

subsequently used to reproduce the expert's problem solving in that domain. Probabilistic expert systems originate 

from research at the intersection of statistics and artificial intelligence. Research on these systems focuses on the 

concepts of relevance and probabilistic independence and has led to the development of intuitive and efficient 
graphical tools for knowledge representation. A prominent tool for capturing expert knowledge in this approach 
are Bayesian networks. Bayesian networks, while also aim at capturing expert knowledge, are based on the 
mathematical foundations of probability theory. When used in reasoning, they apply mathematical formalism and 

make no claim about reproducing the expert's thought process. 

Several authors have studied theoretical differences between rule-based expert systems and normative systems 
(e.g., Heckerman 1985, Lucas 2001, van der Gaag 1990), in particular with respect to handling uncertainty. 

Much less work, however, has been done on studying the implications that choosing one approach over the other 
has on the knowledge engineering effort and overall system performance. Today, theoretical developments and 

practical experiences with the probabilistic systems are matching those of rule-based expert systems. Both rule- 
based and probabilistic systems are in wide use and it is more than ever important to understand the advantages 

and drawbacks of each of the approaches. 

Our work in this area focuses on comparing the two approaches in the context of a challenging practical problem 
that we worked on independently (Onisko & Druzdzel and our co-author, Peter Lucas), using both rule-based and 

probabilistic approaches: diagnosis of liver disorders. Expert systems that we have developed are of considerable 

size and have taken several years to build. Hepatology, the study of diseases of the liver and biliary tract, is an 

excellent domain for such comparison, as it is complex, contains both rare and frequently occurring disorders, 

disorders for which both much biomedical knowledge is available and which are described only in terms of 

symptoms and signs. The results of our comparison were published in the European Conference on Artificial 

Intelligence in Medicine (Onisko et al. 2001). 

Quantitative experiments that we performed within the framework of this study have confirmed that a rule-based 

system can have difficulty with dealing with missing values: around 35% of the IFF patients (the data set used by 
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Dr. Lucas in building the rule-based version of Hepar) remained unclassified by the rule-based Hepar, while in 

Hepar-BN only $2%$ of IFF patients remained unclassified. This behavior might be due to the semantics of 

negation by absence, and in fact a deliberate design choice in rule-based systems. Refraining from classifying is 

better than classifying incorrectly, although it will be at the cost of leaving certain cases unclassified. In all cases, 

the true positive rate for Hepar-BN was higher than for the rule-based Hepar, although sometimes combined with a 

lower true negative rate. 

Both systems were in general more accurate when dealing with their original datasets. The reason is that the 

systems were using then all available data, not only the common variables. We have noticed some indications of 

overfitting in case of Hepar-BN, visible especially in those results, where the system was trained and tested on 

different data sets. 

Building the models in each of the two approaches has its advantages and disadvantages. One feature of the rule- 

based approach that we found particularly useful is that it allows testing models by following the trace of the 
system's reasoning. A valuable property of Bayesian network-based systems is that models can be trained on 

existing data sets. Exploiting available statistics and patient data in a Bayesian network is fairly straightforward. 

Fine-tuning a rule-based system to a given dataset is much more elaborate. 

Rule-based systems capture heuristic knowledge from the experts and allow for a direct construction of a 

classification relation, while probabilistic systems capture causal dependencies, based on knowledge of 
pathophysiology, and enhance them with statistical relations. Hence, the modeling is more indirect, although in 
domains where capturing causal knowledge is easy, the resulting diagnostic performance may be good. Rule-based 

systems may be expected to perform well for problems that cannot be modeled using causality as a guiding 
principle, or when a problem is too complicated to be modeled as a causal graph. 

6eNIe and SMILE® 

A major accompUshment of the project is the implementation of the system. Since there is much interest now in 
Bayesian networks, influence diagrams, and decision-analytic systems, we have put much effort in making the 
implementation easy to use and robust and decided to share it with the community. We believe that this will bring 

a high payoff in the long run in terms of practical applications based on our system. We have written a 
comprehensive on-line help for GeNIe (the user interface running on Windows machines), useful for both 

beginning modelers and students in decision-analytic methods and a documentation for SMILE*® (Structural 

Modeling, Inference, and Learning Engine), a portable library of C++ classes for decision-theoretic reasoning, 

GeNIe's reasoning engine. We have also developed SmileX, an Active-X control version of SAMLE® that 

allows the program to be used fi-om most Windows applications, including Visual Basic, Excel, and HTML pages. 

We have made our programs available on the World Wide Web in July 1998 (the address to download the program 

is: http://www.sis.pitt.edu/~genie). There is a growing number of users of our software. Over 5,000 people from 

countries all over the world downloaded it since the release date. We have heard very positive feedback from 

these users. 
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During the period of the current grant, we have enhanced the module for assistance in model building based on 

causal mechanisms, the work on which started as a result of the previous AFOSR grant. We have also developed a 

specialized module for diagnosis, and a module for learning models from data. These modules have not been 

released on the World Wide Web yet because they are not sufficiently reUable (given the large number of users of 

our programs, we have adopted high quality standards for releasing our software). 

We have a first implementation of the scheme for search for opportunities in causal models, i.e., such a mode of 

working of a system that allows for automatic and autonomous choice of policy variables. 

We have advanced on the second generation of the program, GeNIe 2.0, which we plan to release in the last 
quarter of 2003. GeNIe 2.0hasamuchbetter user interface, it includes the diagnostic module. Its reasoning 

engine, SMILE®, available also separately, is much faster and it includes our recent additions to the stochastic 

sampling algorithms. We have replaced StnileX with SMILE.NET, which offers an even wider applicability, 

while being upward compatible with the Active-X standard. 

Screenshots of GeNIe 2.0 and its diagnostic interface are presented in Figures 5 and 6. 
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Figure 11: A screen shot of GeNUe 2.0. 
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Figure 12: A screen shot of the diagnostic interface of GeNIe 2.0 (the Hepar II model). 
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2000), pages 72-81, Morgan Kaufinann Publishers, Inc., San Francisco, CA, 2000. 

Other peer reviewed conferences, symposia, workshops, and booli chapters: 

Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. HEPAR and HEPARII - computer systems 
supporting a diagnosis of liver disorders. In Proceedings of the Twelfth Conference on Biocybemetics and 
Biomedical Engineering, Warsaw, Poland, November 28-30, 2001. (Best Young Investigator Paper award for 
Ms. Onisko). 

Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. An experimental comparison of methods for handling 
incomplete data in learning parameters of Bayesian networks. In Intelligent Information Systems 2002: 
Proceedings of the IIS'2002 Symposium, M. Klopotek, S.T. Wierzchon, M. Michalewicz (eds.), pages 351-360, 
Advances in Soft Computing Series, Physica-Verlag (A Springer-Verlag Company), Heidelberg, 2002. 

F. Javier Diez and Marek J. Druzdzel. Fundamentals of canonical models. In Proceedings of the IX Conferencia 
de la Asociacion Espanola para la Inteligencia Artificial (CAEPIA-TTIA 2001), pages 1125-1134, Gijon, Spain, 
2001. 

Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. Extension of the Hepar II Model to Multiple- 
Disorder Diagnosis. In Intelligent Information Systems, M. Klopotek, M. Michalewicz, S.T. Wierzchon (eds.), 
pages 303-313, Advances in Soft Computing Series, Physica-Verlag (A Springer-Verlag Company), Heidelberg, 
2000. 

Marek J. Druzdzel and F. Javier Diez. Criteria for combining knowledge from different sources in probabilistic 
models. In Working Notes of the workshop on "Fusion of Domain Knowledge with Data for Decision Support," 
Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2000), pages 23-29, Stanford, CA, 
30 June 2000. 
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Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. Learning Bayesian network parameters from small 
data sets: Application of Noisy-OR gates. In Working Notes of the Workshop on Bayesian and Causal Networks: 
From Inference to Data Mining, 12th European Conference on Artificial Intelligence (ECAI-2000), Berlin, 
Germany, 22 August 2000. 

Marek J. Druzdzel and Roger R. Flynn. Decision Support Systems. In Encyclopedia of Library and Information 
Science, Vol. 67, Suppl. 30, pages 120-133, Allen Kent (ed.). Marcel Dekker, Inc., New York, 2000. 
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Interactions / Transitions 
a. Participation / presentations at meetings, conferences, seminars, etc 

The PI, Dr. Druzdzel, gave a lecture on augmenting human decision making through normative systems at the Air 

Force Rome Laboratories Decision Science Working Group (DSWG) meeting, George Mason University, October 

2002. 

The PI, Dr. Druzdzel, gave a lecture on the project at the National University for Distance Education, Madrid, 

Spain, May 2002. 

The PI, Dr. Druzdzel, gave a lecture on the project at the University of Pittsburgh, May 2002. 

The PI, Dr. Druzdzel, gave a lecture on the project at the New World Vistas progress meeting in Minnowbrook, 

NY, November 2001. 

Doctoral student Mr. Denver Dash, gave two presentations of joint work with the PI at the Sixth European 

Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-2001), 

September 2001. 

The PI, Dr. Druzdzel, gave a lecture on augmenting human decision making through normative systems at the 

Biomedical Asia 2001 Conference, September 2001. 

Doctoral students: Mr. Jian Cheng, Mr. Tsai-Ching Lu and Ms. Haiqin Wang, gave presentations of joint work 

with the PI at the 17* Annual Conference on Uncertainty in Artificial Intelligence (UAI-2001), July 2001. 

Doctoral student Ms. Haiqin Wang, gave a presentation of joint work with the PI at the Fourteenth International 

Florida Artificial Intelligence Research Society Conference (FLAIRS-2001), May 2001. 

The PI, Dr. Druzdzel, gave a lecture on the project in the Department of Statistics, University of Pitttsburgh, 

January 2001. 

The PI, Dr. Druzdzel, gave a presentation during the annual New World Vista progress meeting at Lockheed 

Martin Electronics and Missiles FacUity, Orlando, FL, September 2000. 

Doctoral students: Mr. Jian Cheng, Mr. Tsai-Ching Lu and Ms. Haiqin Wang, gave presentations of joint work 

with the PI at the 16* Annual Conference on Uncertainty in Artificial Intelligence (UAI-2000), July 2000. 

A doctoral student, Mr. Jian Cheng, gave a presentation of joint work with the PI at the 13* International Florida 

Artificial Intelligence Research Symposium Conference (FLAIRS-2000), May 2000. 

The PI, Dr. Druzdzel, gave a lecture on the project at the Honors Day at the University of Pittsburgh, March 2000. 

The PI, Dr. Druzdzel, gave a lecture on the qualitative aspects of graphical models at the Naval War College, The 

Center for naval Warfare Studies, March 2000. 

b. Consultative and advisory functions to other laboratories 

None so far 
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c Applications of our software 

Here are some of the applications of our results and our software: 

Dr. John Lemmer (John.Lemmer@rl.af.mil) at the US Air Force Rome Laboratories will use the results of our 

research on stochastic sampling algorithms in his work on causal military planning. 

Dr. Wojtek Przytula (wojtek@hrl.com) at the Hughes Raytheon Laboratories uses GeNUe and SMILE® in a 

diagnostic system for General Motors Diesel locomotives. Researchers at Boeing are also applying our software in 

the work on diagnosis. We have had initial contacts with researchers at Intel interested in applying GeNIe in their 

work. 

GeNIe and SMILE® were applied in an intelligent tutoring system for teaching elementary physics, developed at 

University of Pittsburgh's Learning Research and Development Center (contact person is Prof. Kurt van Lehn, 

vanlehn@cs.pitt.edu). The system was aimed to be applied in teaching Navy cadets. Continuation of this work is 

at the University of British Columbia, Vancouver, Canada. The point of contact is Dr. Cristina Conati 

(conati @ cs.ubcca). 

Rockwell International Science Center, Palo Alto Laboratory, in collaboration with US Air Force Rome 
Laboratories applied GeNIe, SMILE® and SmileX to the problem of battle damage assessment. The contact 

persons there are Mark Peot (peot@rpal.rockweIl.com) and John F. Lemmer. 

The Decision Support Department of the United States Naval War College, Newport, RI, plans to use GeNIe and 

SMILE® in supporting a joint US NWC/NATO project on detection of sources of regional instabilities. The point 

of contact there is Bradd C. Hayes (hayesb@nwc.navy.mil). 

In collaboration with a group of researchers in Poland, we have applied GeNIe and SMILE® to the problem of 

medical diagnosis of liver disorders. This problem is quite similar to the problem of battle damage assessment. 

We have two current points of contact who are interested in using the results of our work when our system 
implements both Bayesian networks and structural equations: Dr. Patrick Love at the ALCOA Technical Center 
(Patrick.Love@alcoa.com), for strategic business planning at Aluminum Company of America, and Mr. Jeffrey 
Bolton (jb5c+@ andrew.cmu.edu) and Mr. Kevin Lamb (kl3g+@ andrew.cmu.edu) at the Carnegie Mellon 

University's Office of Planning and Budget, for strategic planning of university operations. These contacts will be 
followed up when GeNIe and SMILE® implement both equations and Bayesian networks. 

University of Pittsburgh School of Information Sciences 



AFOSR Enhancements of Systems Based on Bayesian Networks and Structural Equation Models for C2 Support      Page 29 

Honors / Awards 

2003 Robert R. Korfhage award (with Adam Zagorecki), awarded school-wide for the best paper co-authored 

between a student and a faculty member. 

Best Young Investigator Paper award for Ms. Onisko for the paper HEPAR and HEPARII - computer systems 

supporting a diagnosis of liver disorders. Twelfth Conference on Biocybernetics and Biomedical Engineering, 

Warsaw, Poland, November 28-30, 2001 

2000 Robert R. Korfhage award (with Jian Cheng), awarded school-wide for the best paper co-authored between 

a student and a faculty member. 

University of Pittsburgh School of Information Sciences 


